ESEC/FSE 2018

26th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), November 4–9, 2018, Lake Buena Vista, FL, USA

Desktop Layout

Security
Industry Papers
PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial Parallel Mode
Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang Sun
(Tsinghua University, China)
Publisher's Version
Abstract: Researchers have proposed many optimizations to improve the efficiency of fuzzing, and most optimized strategies work very well on their targets when running in single mode with instantiating one fuzzer instance. However, in real industrial practice, most fuzzers run in parallel mode with instantiating multiple fuzzer instances, and those optimizations unfortunately fail to maintain the efficiency improvements. In this paper, we present PAFL, a framework that utilizes efficient guiding information synchronization and task division to extend those existing fuzzing optimizations of single mode to industrial parallel mode. With an additional data structure to store the guiding information, the synchronization ensures the information is shared and updated among different fuzzer instances timely. Then, the task division promotes the diversity of fuzzer instances by splitting the fuzzing task into several sub-tasks based on branch bitmap. We first evaluate PAFL using 12 different real-world programs from Google fuzzer-test-suite. Results show that in parallel mode, two AFL improvers–AFLFast and FairFuzz do not outperform AFL, which is different from the case in single mode. However, when augmented with PAFL, the performance of AFLFast and FairFuzz in parallel mode improves. They cover 8% and 17% more branches, trigger 79% and 52% more unique crashes. For further evaluation on more widely-used software systems from GitHub, optimized fuzzers augmented with PAFL find more real bugs, and 25 of which are security-critical vulnerabilities registered as CVEs in the US National Vulnerability Database.

Authors:


Time stamp: 2019-05-19T20:22:29+02:00