ASE 2017

2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2017), October 30 – November 3, 2017, Urbana-Champaign, IL, USA

Desktop Layout

Test Generation
Technical Research
Learn&Fuzz: Machine Learning for Input Fuzzing
Patrice Godefroid, Hila Peleg, and Rishabh Singh
(Microsoft Research, USA; Technion, Israel)
Abstract: Fuzzing consists of repeatedly testing an application with modified, or fuzzed, inputs with the goal of finding security vulnerabilities in input-parsing code. In this paper, we show how to automate the generation of an input grammar suitable for input fuzzing using sample inputs and neural-network-based statistical machine-learning techniques. We present a detailed case study with a complex input format, namely PDF, and a large complex security-critical parser for this format, namely, the PDF parser embedded in Microsoft's new Edge browser. We discuss and measure the tension between conflicting learning and fuzzing goals: learning wants to capture the structure of well-formed inputs, while fuzzing wants to break that structure in order to cover unexpected code paths and find bugs. We also present a new algorithm for this learn&fuzz challenge which uses a learnt input probability distribution to intelligently guide where to fuzz inputs.


Time stamp: 2019-06-19T14:53:20+02:00